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Estimates of Eigenvalues for 
Iterative Methods* 

By Gene H. Golub and Mark D. Kent** 

Abstract. We describe a procedure for determining estimates of the eigenvalues of 
operators used in various iterative methods for the solution of linear systems of equations. 
We also show how to determine upper and lower bounds for the error in the approximate 
solution of linear equations, using essentially the same information as that needed for 
the eigenvalue calculations. The methods described depend strongly upon the theory of 
moments and Gauss quadrature. 

1. Introduction. We wish to solve the system of equations 

(1) Ax = b 

where A is an n x n, symmetric, positive definite matrix. It is frequently desirable 
to rewrite (1) as 

(2) Mx=Nx+c, 

where M and N are symmetric and M is positive definite. We are interested in 
those situations where it is a much simpler computational task to solve the system 
Mz = d than it is to solve (1). 

We shall use an iterative procedure of the form 

(3) Xk+l = Xk-1 + Wk+1(SkZk + Xk-Xk-1), k = 0,1,2,...; x-1 = 0 

and a splitting where A = M - N and c = b in (2). The "generalized residual" 
vectors, Zk, are given by MZk = b-Axk b- (M-N)Xk. Depending on the choice 
of parameters, (3) describes the conjugate gradient method, the Richardson second- 
order method, or the Chebyshev semi-iterative (CSI) method [1]. The success of 
the latter two methods depends on having good estimates for the smallest and 
largest eigenvalues of M-1N. In this paper we show how to obtain the eigenvalue 
estimates using modified moments calculated from successive iterates. 

The algorithm for estimating the optimal parameters is based on the modified 
Chebyshev algorithm given in [4]. See also [5], [11], [12]. 

In Section 2, we show how modified moments arise naturally in certain iterative 
methods and how to determine successive elements in a tridiagonal matrix whose 
eigenvalues approach the eigenvalues of the iteration matrix. Improvements, specif- 
ically for the CSI method, are given in Section 3. Determining error bounds is the 
topic of Section 4 and this is followed by computational results in Section 5. 
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2. Modified Moments and Iterative Methods. We now demonstrate how 
modified moments arise in certain iterative methods for the solution of symmetric, 
positive definite linear systems Ax = b. In the following discussion let 6 = 6k be 
fixed. 

The vectors Zk are related to zo by 

(4) Zk = Pk(B)zo, B-I-6M-1A, 

where Pk(A) is a polynomial of degree k satisfying the three-term recurrence 

(5) Pk+ 1 (A) = Uk+ l APk (A) + (l -Uk+ 1)Pk-1 (A), p-1 (A) = 0 po (A) = 1. 

The matrix B has a complete set of M-orthogonal eigenvectors, Q = [q,.... , qn], 

corresponding to real eigenvalues A = diag(A1, A2,...,An) [13]. Clearly, Pk(B) = 

QPk(A)Q-1. Write zo as a linear combination of the eigenvectors qi of B, 
n 

Zo= E aiqi; 
i=l 

then, from (4), we have 
n 

Zk = acipk(Ai)qi. 

Now, form the inner product 

(6) (Zk, Zl) = (Zk, MZL) = Z i pk(Ai)pl(Ai) Pk(A)Pi(A) da(A), 
i=1 

where a(A) is a discrete nonnegative distribution with jumps of height a? at each 

eigenvalue Ai. 

Associated with the distribution a(A) is a set of discrete orthogonal polynomials 

{Ik (A) }n=0 such that 

I Oki(A)IVvj(A) da(A) = 0 when i # j. 

The "final" orthogonal polynomial, On (A), has a zero at each point of increase of 

the distribution, i.e., Pnb(Ai) = 0, i = 1 ... Xn. 

With each iteration of (3) we can calculate a modified moment of the distribution 

a(A): 

(7) Vk = (Zk,ZO) = fPk(A)da (A) 

and these quantities can be used in the modified Chebyshev algorithm [4] to gen- 

erate the orthogonal polynomials. 

Let 

Apj(A) = bjpj+1 (A) + ajpj(A) + c.pj_1(A) 

and 

(8) A4j (A) = ij3V5k+1(A) + aj Oj5(A) + yj j 1(A). 

The modified Chebyshev algorithm starts with 

CJ11= O, ao,I, = vIJ for I = ,1 0 , 2m -1, 

(9) ao = ao +bo 1i, a? =? 
Uloo 
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and continues with k = 1, 2,.. , m - 1: 

rkl = - [biOk-1,1+1 + (al - ak-1)Uk-1,1 + ClOfk-1,1-1 - 'k-1Ok-2,1l 
3k-1 

forl=k,k+1,...,2m-k- 1, 
(10) ak = ak + bk k,k+l 

- 

bk-1 Ck-l,k 
0kk ak-l,k-1 

'tk = bk-1 
ak-l,k-1 

The coefficients {/i } are not specified by the algorithm and can be chosen to scale 
the generated polynomials. The choice /i = 1 will generate monic polynomials. For 
the polynomials Pk(A) we have bj = 1/wj+1, aj = 0, and cj = (wj+l - 1)/wj+1 and 
we choose /3 = by. 

This computational procedure is equivalent to the Lanczos algorithm [10]. Thus 
the extreme eigenvalues of the quasi-symmetric tridiagonal matrix formed by the 
coefficients in (8), 

ao d3o 

Y1 al pi 

(11) Jk = *.. **. *.X 

'k-2 ak-2 /3k-2 

L'-k-1 ak-1 

will, in general, provide good approximations to the extreme eigenvalues of B as k 
increases. Once we have sufficiently accurate estimates for the largest and smallest 
eigenvalue, we can restart the iterative solution of (1) with (near) optimal param- 
eters. 

3. Improving the Calculation of the Modified Moments. We now derive 
improved expressions for the modified moments 1vk in terms of the vectors Zk for 
the CSI method. After 2m iterations of (3) we can determine Jm and have, in 
principle, the zeros of Om (A). 

.Obviously, it would be advantageous to have the roots of 1/im (A) after only m 
iterations of (3). It is possible to attain this goal if the iteration (3) is the Chebyshev 
semi-iterative method [9]. For the CSI method we have estimates, a and b, of 
the smallest and largest eigenvalues of M'1A, and the parameters, in terms of 

i= (b-a)/(b + a), are given by 

b2 W Uk+1 1= 2 with 1w=1, w2 = I 
4L 2 

It is well known [9] that 

Ck(A/kt) 
(12) Pk(A)= I 

where 
Ck(X) = { cos(kcos-1 x), xi < 1,k > 0; 

cosh(kcosh-1 x), lxi > 1, k > 0. 

Ck(X) satisfies the three-term recurrence relation Ck+l (x) = 2XCk(X) - Ck-l (x) 
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with initial conditions Co(x) = 1 and Ci(x) = x. From the identity cos(k + 1)0 = 

2 cos k0 cos 10 - cos(k - 1)0, we have Ck+l = 2CkCG-Clk-11. Hence, for I = k and 
I = k + 1, 

(13) C2k = 2Ck- Co, 02k+1 = 2CkCk+1 - Cl. 

Working from (12) and making liberal use of these identities, we obtain 

C2k (A /I) =2(A) + 1 p2O(l1) 
() =C2k(l/=) k [Pk() A ] 

which leads directly to the modified moment 

(14) V2k = (Zk, Zk) + Ck (1 /P) ((Zk, Zk)- VO)M 

Similarly, we can derive 

(15) 2k+1 = (Zk,Zk+1) + (( ) ) 

The first two modified moments are given by vo = (zo, zo) and v1 = (zo, z1). Hence, 
with each generalized residual vector we can compute two more modified moments. 

4. Error Bounds. In this section we indicate how to obtain error bounds for 
an approximate solution to the system Ax = b. In [21 it is shown how moments, 
and the associated Gauss-Radau quadrature rule, can be used to obtain bounds on 

ix- xO 11 2 (i.e., the error in the initial approximate solution), as well as bounds for 

jjx-xi4j2 for the Jacobi method. These results are extended in [3] to the conjugate 
gradient method (see also [7]). 

We consider an iterative method of the form xk+l = Bxk +g and let B = I-SA. 
Hence, the errors, Ek = X - Xk, satisfy 

Ek= BEk-1= BkEo. 

Now since Zk = AEk, and A = ,.(I - B), we see that Ask = pk(B)zo, and hence 

(16) ET AEk =ZT pk(B)(I - B)'Pk(B)ZO = 8v0 k ( da(0). 

Define 
q (f9)_2Pk(O) p2(0) 

_ + 1 

i1- 0 1 -0 1 -0O 

Here, the first term on the right is a polynomial of degree 2k - 1 (since pk(1) = 1; 
see (12)) and 

dr (1- 0)-' = r!(1 )-(r+l) > 0 for 101 < 1. 

Thus, if we apply a (k + 1)-point Gauss-Radau quadrature rule to qk(0), we have 
as a remainder term [2], [3] 

Jb 
R[qk(0)] =(1 _ 7)-(2k+2) (0-_to)g2(0) dca(0) with j71 < 1. 

Here gk (0) is a kth degree polynomial. Hence, if to = a, the Gauss-Radau rule 

yields a lower bound for (16), and if to = b, the rule yields an upper bound. 
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The Gauss-Radau rule is computed as follows. Let (cf. (11)) 

ato 3o 
a, 

Jk+1= . *. *. 

Ik-, ak-1 Ok-1 

Sk ak 

We wish to calculate dkso that to is an eigenvalue of Jk+1 and hence the eigenvalues 
and eigenvectors of Jk+1 yield the Gauss-Radau rule [6]. To compute (k we solve 

(Jk - toI)6 = -/3k-lek, 

where ek = (O, O ..., O, 1)T. Then ?k = to- Ykbk. 

5. Computational Results. In view of the equivalence of the modified Cheby- 
shev algorithm and the Lanczos algorithm we would expect similar convergence 
properties of the eigenvalue calculations in practice. In general, this is indeed the 
case, but there are circumstances where the behavior of the two methods is quite 
different. Two points in particular require further investigation: 1) the sensitiv- 
ity of the modified Chebyshev algorithm to the distribution, a(A), compared to 
the Lanczos algorithm, and 2) the effect of the initial parameters of the iterative 
method on the modified Chebyshev algorithm. The first point is dependent on how 
well the modified moments we calculate codify the distribution, while the second 
point affects how well we calculate the modified moments. 

Both of the points above affect the termination properties of the modified Cheby- 
shev algorithm. Termination occurs when 0kk in (10) is nonpositive, and this can 
occur either because of numerical stability problems or simply because there are 
no more orthogonal polynomials to generate (i.e., if the distribution has m points 
of increase then only m + 1 orthogonal polynomials can be generated). 

Tables 5.1 and 5.2 show the results of two sets of experiments with the Chebyshev 
semi-iterative method. For each problem the same randomly generated, unit-length, 
starting vector and right-hand side were used. Convergence of the eigenvalue cal- 
culations occurred when ,u, calculated from the extreme eigenvalues of Jk, was 
within a prescribed tolerance, e, of the value of p from the pervious iteration. Two 
strategies were used to determine when to change the parameters. The first was 
to continue with the CSI method with the initial parameters until near optimal 
eigenvalue estimates were available. In this case we would use ? = 10-6 and, when 
convergence of ,l was realized, would restart the CSI method from the current so- 
lution vector using the new parameters. No more eigenvalue calculations would be 
performed. 

The second strategy was to select a decreasing sequence of tolerances, el, 62,.... 

E, and allow up to s parameter changes. At step i, convergence of ,u to within e, 
was required. Then, after changing parameters and restarting the CSI method, 
convergence of ,u to within ei+l was required. In the following tests we used s = 3 
and ei- 10-2i. 

The matrix resulting from the discretization of the two-dimensional Laplace 
equation was used for the results in Table 5.1. The values of 6 and p are the 
parameters used to start the iterations (calculated from estimates a and b). The 
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column labeled 'fixed' gives the number of iterations required to reduce the norm 
of the error to less than 0.5 x 10-4 when no parameter changes were made, i.e., 
the calculations were continued with the initial choice of parameters. The column 
labeled 'dynamic' shows the number of iterations required when the parameters 
were changed at some point during the execution. The column labeled 'change' 
indicates the iteration at which the parameters were changed. This stage occurs 
when the eigenvalue calculations either converge or terminate. Finally, the columns 
6 and ,u indicate the parameters used to restart the process at the 'change' point. 

TABLE 5.1 
2D Laplace, 4096 x 4096 in 64 x 64 blocks. popt ; 0.998832, 

6opt = 0.25, a.pt 0.00467, bopt 7.99533. t indicates that the optimal 
parameters were obtained to machine accuracy. 

a b 6 fixed dynanic change 6 | 2 

1 aopt bopt 6opt Iopt 219 237 30 0.248307 0.97872291 

122 0.250054 0.99861292 

176 t t 

2 0.1 7.9 6opt 0.975 1018 240 30 0.248307 0.97872291 

112 0.250031 0.99866113 

152 t t 

3 0.0 8.0 6opt 1.0 -o 234 30 0.248307 0.97872291 

126 0.249988 0.99695640 

____ ___ ____ 202 t t 

For this problem, the optimal Chebyshev semi-iterative method converges in 
219 iterations. The same (optimal) parameters are obtained from the eigenvalue 
calculations at iteration 176, after changing parameters at iterations 30 and 122. 
The desired solution vector is reached at iteration 237. The parameter change at 
iteration 30 replaces the optimal initial parameters with the values of S and ,u shown. 
This, of course, slows down convergence of the CSI method until the parameters 
are improved at iteration 122 and we finally arrive at the optimal parameters at 
iteration 176. 

Next (entry 2) the initial parameters are chosen so that ,u = 0.975 and the 
parameters are changed at iterations 30, 112 and 152. If the parameters were not 
changed throughout the iterations, then over one thousand iterations would be 
required to solve the linear system. The dynamic Chebyshev method requires only 
240 iterations. 

Next, a = 0, so that wk = 2 for all k > 1, and the CSI method neither converges 
nor diverges. The eigenvalue calculations again perform well and convergence of 
the CSI method is reached in only 234 iterations. 

The next series of experiments use a tridiagonal matrix associated with a discrete 
set of orthogonal polynomials called Krawtchouk polynomials. The (n + 1) x (n + 1) 
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Krawtchouk matrix has the following form: 

a1 p 

q/n a2 (n - 1)p/n 

K = 2q/n a3 (n-2)p/n 

an p/n 

L q aOn+lJ 

where ak is chosen to make the row sums equal one. This matrix has the property 
that for p > 0, q = 1 - p, the (n+ 1) eigenvalues of K are Aj = j/n, for j = 0, .. . , n. 

The tests used the 256 x 256 shifted matrix K = K+ 1 I which has ,uopt = 0.90, 
6opt = 1.8. Iterations were continued until the norm of the error was less than 

18 0.5 X 10-8. The extreme eigenvalues are a = 18 0.0555556 and b = 1 + a. The 
eigenvalue calculations were performed with s = 1 and e1 = 10-2. 

TABLE 5.2 
Krawtchouk matrix, 256 x 256, ,opt = 0.90, 

6opt = 1.8, aopt = 1/18, bopt = 1 + aopt. 

a b 8 Is fixed dynamic change h 

1 aopt bopt Sopt Iopt 43 48 12 1.79 0.8716981 

2 0.01 1.1 1.80180 0.981982 104 58 12 1.79 0.8716981 

3 0.06 1.0 1.88679 0.886792 > 256 56 12 1.79 0.8716981 

The CSI method with optimal parameters required 43 iterations to meet the 
requested tolerance. In each of the three tests shown in Table 5.2 the eigenvalue 
calculations converged in 12 steps. The optimal parameters used in the first row 
are changed by the method, resulting in a penalty- of five iterations. However, the 
second and third examples clearly show the value of the change where the param- 
eters obtained were sufficiently accurate to provide large savings in the number of 
iterations. In the third example, the error for the fixed iterations is as large as 
O(10-3) at iteration 256. 

6. Summary. We have shown how to apply the method of modified moments 
to obtain an algorithm for computing the optimal parameters for the preconditioned 
Chebyshev semi-iterative method. Numerical results indicate that the algorithm 
performs well in practice. More extensive numerical tests will be reported at a later 
date. 

We have also shown how to use modified moments to obtain sharp lower and 
upper bounds for certain measures of the error in the approximate solution vectors. 

Variations of the material in this paper can be found in [8]. 
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